27 research outputs found

    Bayes\u27 Law, Sequential Uncertainties, and Evidence of Causation in Toxic Tort Cases

    Get PDF
    Judges are the gatekeepers of evidence. Arguably, the most difficult duty for a judicial gatekeeper is to screen the reliability of expert opinions in scientific fields such as medicine that are beyond the ken of most judges. Yet, judges have a duty to scrutinize such expert opinion evidence to determine its reliability and admissibility. In toxic tort cases, the issue of causation-whether the alleged exposures actually caused the plaintiffs injury-is nearly always the central dispute, and determining admissibility of expert causation opinion is a daunting challenge for most judges. We present a comprehensive review of the courts\u27 struggles with the screening of scientific evidence in such cases. In addition, we propose an approach to the screening of causation opinions based on probability science and logic. Central to this approach is Bayes\u27 Law, a statistical tool that courts can use to analyze the extrinsic reliability of proffered causation testimony. We explain Bayes\u27 Law and illustrate its potential application for evaluating the reliability of medical and scientific causation testimony. All evidence is probabilistic. There are uncertainties attending all testimony, not only because the honesty or objectivity of witnesses may be doubtful, but also because even honest and unbiased witnesses may be mistaken in their perceptions. Reliability of causation evidence depends on both sensitivity and specificity of the tests used to determine causation. Highly sensitive tests of causation reflect an ability to identify a high percentage of those with the agent-induced disease, whereas highly specific tests of causation reflect an ability to reject a high percentage of those who have the disease, but not induced by the agent at issue. According to Bayes\u27 Law, the reliability of causation opinion depends not only on the sensitivity and specificity of the tests employed by the causation expert, but also on the base rate of the agent-induced disease in the population. Bayes\u27 Law dictates that the lower the rate of the agent-induced disease in the population, the less reliable the opinion that the agent at issue in fact caused the plaintiffs disease given certain levels of sensitivity and specificity. The base-rate problem and its effect on reliability of causation opinions are overlooked by judges when scrutinizing the reliability of proffered causation evidence. In this Article, we encourage courts to consider a Bayes\u27 Law approach to screen out, at an early stage, those claims of injury lacking reliable evidence that an injury was more likely than not caused by exposures to toxic agents. The goal of our Article is to provide a framework that helps the gatekeeper to screen out toxic tort claims insufficiently substantiated by the underlying scientific and medical data, and allow the factfinder to decide only those toxic tort claims for which there is reliable and relevant scientific support for each link of the causal chain, from subject exposure to the injury Scientific substantiation of each causal link determines the reliability of an experts opinion that the exposure more likely than not caused the plaintiffs injury

    Comment on the Nanoparticle Conclusions in Crüts et al. (2008), "Exposure to diesel exhaust induces changes in EEG in human volunteers"

    Get PDF
    A recent publication in this journal reported interesting changes in electroencephalographic (EEG) waves that occurred in 10 young, male volunteers following inhalation for one hour of elevated levels of diesel-engine exhaust fumes [1]. The authors then proposed a chain of causal events that they hypothesized underlay their observed EEG changes. Their reasoning linked the observed results to nanoparticles in diesel-engine exhaust (DEE), and went on to suggest that associations between changes in ambient particulate matter (PM) levels and changes in health statistics might be due to the effects of diesel-engine exhaust (DEE) nanoparticles on EEG. We suggest that the extrapolations of the Crüts et al. EEG findings to casual mechanisms about how ambient levels of DEE particulate might affect electrical signals in the brain, and subsequently to how DEE particulate might alter disease risk, are premature

    Workgroup Report: Base Stations and Wireless Networks—Radiofrequency (RF) Exposures and Health Consequences

    Get PDF
    Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health

    Childhood leukemia: electric and magnetic fields as possible risk factors.

    Get PDF
    Numerous epidemiologic studies have reported associations between measures of power-line electric or magnetic fields (EMFs) and childhood leukemia. The basis for such associations remains unexplained. In children, acute lymphoblastic leukemia represents approximately three-quarters of all U.S. leukemia types. Some risk factors for childhood leukemia have been established, and others are suspected. Pathogenesis, as investigated in animal models, is consistent with the multistep model of acute leukemia development. Studies of carcinogenicity in animals, however, are overwhelmingly negative and do not support the hypothesis that EMF exposure is a significant risk factor for hematopoietic neoplasia. We may fail to observe effects from EMFs because, from a mechanistic perspective, the effects of EMFs on biology are very weak. Cells and organs function despite many sources of chemical "noise" (e.g., stochastic, temperature, concentration, mechanical, and electrical noise), which exceed the induced EMF "signal" by a large factor. However, the inability to detect EMF effects in bioassay systems may be caused by the choice made for "EMF exposure." "Contact currents" or "contact voltages" have been proposed as a novel exposure metric, because their magnitude is related to measured power-line magnetic fields. A contact current occurs when a person touches two conductive surfaces at different voltages. Modeled analyses support contact currents as a plausible metric because of correlations with residential magnetic fields and opportunity for exposure. The possible role of contact currents as an explanatory variable in the reported associations between EMFs and childhood leukemia will need to be clarified by further measurements, biophysical analyses, bioassay studies, and epidemiology

    Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy

    Get PDF
    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylus porosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.Roger S. Seymou
    corecore